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Abstract

Background: Naturalistic stimuli, such as videos, can elicit complex brain activations. However, the intricate nature of these stimuli
makes it challenging to attribute specific brain functions to the resulting activations, particularly for higher-level processes such as
social interactions.

Objective: We hypothesized that activations in different layers of a convolutional neural network (VGG-16) would correspond to vary-
ing levels of brain activation, reflecting the brain’s visual processing hierarchy. Additionally, we aimed to explore which brain regions
would be linked to the deeper layers of the network.

Methods: This study analyzed functional MRI data from participants watching a cartoon video. Using a pre-trained VGG-16 convo-
lutional neural network, we mapped hierarchical features of the video to different levels of brain activation. Activation maps from
various kernels and layers were extracted from video frames, and the time series of average activation patterns for each kernel were
used in a voxel-wise model to examine brain responses.

Results: Lower layers of the network were primarily associated with activations in lower visual regions, although some kernels also
unexpectedly showed associations with the posterior cingulate cortex. Deeper layers were linked to more anterior and lateral regions
of the visual cortex, as well as the supramarginal gyrus.

Conclusions: This analysis demonstrated both the potential and limitations of using convolutional neural networks to connect video
content with brain functions, providing valuable insights into how different brain regions respond to varying levels of visual process-
ing.

Keywords: convolutional neural network; deep learning; default mode network; lateral occipital complex; naturalistic condition;
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Introduction

Recently, naturalistic stimuli, such as movies and stories, have
increasingly been employed to study brain functions in human
neuroimaging research. This approach offers several advantages
over traditional task-based functional magnetic resonance imag-
ing (fMRI) experiments. One of the primary benefits is that natu-
ralistic stimuli closely resemble real-life situations, enabling the
elicitation of complex cognitive processes. On the other hand,
compared with resting-state fMRI, naturalistic stimuli allow for
a higher level of experimental control, resulting in improved par-
ticipant cooperation and increased reliability of research find-
ings. A pivotal study by Hasson et al. demonstrated that different
participants watching the same video stimulus exhibited similar
patterns of brain activity across distributed brain regions (Has-
son et al., 2004). This finding led to the widespread use of inter-
participant correlation as a means to identify activity and con-
nectivity patterns associated with various stimuli (Nastase, 2019;
Chen et al, 2020; Di and Biswal, 2020). Despite these advance-
ments, one major challenge is linking the observed brain data to
the contents of naturalistic stimuli, such as videos and audios,
due to their inherent complexity.

Numerous analytical approaches have emerged to study the
complexities of naturalistic stimuli. One conventional method is
utilizing human subjective ratings. For instance, researchers have
asked participants to rate their perceived motion while watching
a cartoon video and then employed general linear model to map
brain responses related to motion perception. This approach iden-
tified motion-sensitive brain regions in the middle temporal lobe
(Rao et al., 2007). Furthermore, subjective affective states can be
reported and linked to brain activations and dynamic connectiv-
ity (Raz et al,, 2012; Sun et al., 2022). Another approach is manually
tagging objects of interest to investigate category-specific brain
activations (Richardson et al,, 2018). Advancements in machine
learning technologies have also been leveraged. Previous studies
used traditional computer vision models to extract global motion,
local motion, and residual models based on motion flow and pat-
terns from videos. They found that the medial posterior parietal
cortex, V5+, and V1-V4 were activated in the scenes of the global
motion model, local motion model, and residual model, respec-
tively (Bartels et al.,, 2008). Celik et al. have built encoding models
of various objects (car, bridge, etc.) from video stimuli to study
category representations in the cerebral cortex (Celik et al., 2021).

Received: 19 July 2024; Revised: 9 September 2024; Accepted: 31 October 2024

202 Joquiedaq €0 Uo 1sanb Aq £225/8./1.209ex/PeIAsd/e601"01/10p/aloIe/peiAsd/wod dnoolwapeoe)/:sd)y woly papeojumod

© The Author(s) 2024. Published by Oxford University Press on behalf of West China School of Medicine/West China Hospital (WCSM/WCH) of Sichuan University.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/
by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial
re-use, please contact journals.permissions@oup.com


https://orcid.org/0000-0002-2422-9016
https://orcid.org/0000-0002-1749-2975
mailto:xin.di@njit.edu
mailto:bharat.biswal@njit.edu
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com

2 | Psychoradiology, 2024, Vol. 4

Recently, convolutional neural networks (CNNs) have been used
to extract visual features of videos, particularly in the context of
face processing (Jiahui et al., 2022; Hu et al., 2023).

The naturalistic stimuli have been selected to explore intri-
cate social functions such as the theory of mind and empathy
(Richardson et al., 2018). However, the field still lacks machine
learning models that can effectively describe various aspects of
social functions due to the complexity of the naturalistic stim-
uli. A recent study by McMahon and colleagues employed mul-
tiple machine learning models to extract different levels of fea-
tures from videos containing social interactions (McMahon et al.,
2023). They established a hierarchy of social interactions, primar-
ily linked to the temporal lobe regions. Nevertheless, the higher-
level features in their hierarchy still rely on manually selected
features. In our current study, we aim to test the hypothesis of
whether we can extract features related to social functions using
CNNs. We systematically investigate how different convolutional
layers are associated with the hierarchy of various brain regions.
This approach may offer valuable insights into understanding the
neural basis of social interactions and potentially uncover novel
findings that were previously limited by manual feature selection
methods.

CNNs have demonstrated remarkable success in computer vi-
sion (Simonyan and Zisserman, 2015; Krizhevsky et al., 2017). One
of fundamental elements in CNNs is the convolutional kernels,
which extract local features from data. As the data progresses
through deeper layers of convolutional kernels, more complex
features are extracted. While CNNs are typically trained on large-
scale image datasets for image recognition, encompassing 1000
categories (Deng et al., 2009), we posit that a CNN trained on the
ImageNet dataset might have learned information relevant to so-
cial interactions. To explore this hypothesis, we investigate how
features extracted from various kernels of convolutional layers
correlate with brain activations in different brain regions. In a re-
cent study, Hu and colleagues utilized a pre-trained VGG-16 CNN
to extract features from different layers while analyzing affective
videos (Hu et al,, 2023). They discovered that brain microstates
calculated from electroencephalogram data were only correlated
with features from deeper convolutional layers (layers 11, 12, and
13). Building on this work, our current study employs fMRI data,
which provides superior spatial resolution. This enables us to ex-
amine how different brain regions are associated with the features
extracted from diverse kernels of convolutional layers. By leverag-
ing the strengths of MRI, we aim to gain deeper insights into the
relationship between neural activations and the hierarchical vi-
sual representations generated by CNNs.

In this study, we employed a single pre-trained VGG-16 net-
work, one of image feature extractors, to analyze a short, ani-
mated movie and extract features at different levels from the con-
volutional layers. Our primary aim was to investigate how and
where these diverse levels of features are represented in the hu-
man brain. To accomplish this, we analyzed fMRI data from young
adult volunteers while they watched the same movie clip. We uti-
lized a generalized linear model approach to map brain regions
whose temporal activity pattern matched the feature activity pat-
tern from specific kernels of a convolutional layer. Our hypothesis
revolves around the notion that brain activation patterns will ex-
hibit a hierarchy from low-level visual areas to high-level areas
related to social interaction and empathy through CNN’s hierar-
chical feature maps. Of particular interest to us were the brain
regions associated with higher convolutional layers. Considering
that VGG-16 was trained for image classification, we postulated
that higher convolutional layers might primarily represent cate-

gorical features, possibly linking to the ventral visual pathway in
the brain. In addition, due to the rich image context in the movie,
it could also encompass action, motion, and social information,
which may be more prevalent in deeper convolutional layers of
VGG-16. We were especially intrigued by whether the dorsal vi-
sual pathway, and even the third “social” pathway, could also be
associated with features from deeper layers. If this proves to be
true, VGG-16 could serve as a valuable tool for studying social
functions using video stimuli, extending beyond its conventional
image classification capabilities.

Materials and Methods
fMRI Data

The fMRI data were obtained from openneuro (https://openneuro.
org/; accession no. ds000228). Only adults’ data (n = 33) were used
for this study. The effective sample consisted of 17 females and 12
males (age range 18-39 years, mean = 24.6, SD = 5.3), excluding
participants with excessive head motion or poor coverage accord-
ing to the criteria mentioned in the previous study (Di and Biswal,
2020).

During the fMRI acquisition, all participants watched the
“Partly Cloudy” animation by Pixar (https://www.pixar.com/
partly-cloudy#par-tly-cloudy-1) for ~6 minutes with a black
screen of first 10 seconds (1-5 TRs) (Richardson et al., 2018). Struc-
tural and functional MRI data were acquired by a 3 Tesla Siemens
Tim Trio scanner at the Massachusetts Institute of Technology.
The T1-weighted structural MRI data were gathered in 176 inter-
leaved sagittal slices with 1mm isotropic. All fMRI data were ac-
quired by a gradient-echo EPI (repetition time (TR) = 2 s, echo time
(TE) = 30 ms, flip angle = 90°). A total of 168 fMRI images were
measured from each participant.

The fMRI data were analyzed using SPM12 and MATLAB
(R2021b) as described in our previous study (Di and Biswal, 2020).
Briefly, first, the anatomical T1 images of all participants were
segmented into six segments. Afterward, all skulls were removed
from the T1 images. All functional images were realigned con-
cerning the first image. In this process, the degree of translation
and rotation was calculated, and participants with a maximum
framewise displacement >1.5 mm or 1.5° were removed (Di and
Biswal, 2015). The remaining functional images were coregistered
with the skull-stripped anatomical image of the same participant.
Next, the anatomical and functional images were normalized to
MNI space, and the voxel size was resampled to 3 x 3 x 3 mm?. Fi-
nally, the functional images were spatially smoothed through an
8-mm Gaussian kernel.

Video Analysis

Because brain activations occurring within each TR are repre-
sented in a single fMRI image, the video content needs to be
grouped into TR units to enable comparison between the con-
tinuous video content and the fMRI data. Given the TR of 2 sec-
onds, each fMRIimage corresponds to 2 seconds of video contents.
Therefore, we averaged the video frames for every 2 seconds be-
fore extracting features from the video. Since the frame rate was
24 frames/s, 48 frames were averaged into one image. As a result,
the 8370 total frames of the video clip were converted to 175 im-
ages.

To examine the correlation between fMRI images generated at
each TR and video features, we utilized CNNs, which are spe-
cialized for image analysis, to process the image-based videos.
Specifically, similar to studies exploring the relationship between
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Figure 1: Illustration of video feature extraction and general linear model (GLM) analysis. (A) 8370 images of the original video were converted into 175
images based on TR 2 s and the 175 images were used in VGG-16 for feature extraction. (B) 2D feature maps from each kernel were transformed into
time series, and then the time series was used for GLM on the fMRI data. Kernel activation maps were calculated by averaging the activation maps of

every kernel of a convolutional layer in VGG-16.

emotion dynamics and stimuli, we employed the pre-trained VGG-
16 model to analyze the image data. VGG-16 consists of 13 convo-
lutional layers, 5 max-pooling layers, and 3 fully connected layers
(Fig. 1A). Each averaged image with 720 x 1280 x 3 dimensions
was fed to the VGG-16 model. The input images were convolved
with 64 3 x 3 x 3 kernels in the first convolutional layer and then
generated 720 x 1280 x 64 feature maps. Feature maps show the
location and intensity of various patterns contained in the input.
These were used as an input of the second convolutional layer and
convolved with 64 3 x 3 x 64 kernels, generating 720 x 1280 x 64
feature maps. Afterward, the size of the feature maps was reduced
to 360 x 640 x 64 through the max-pooling layer. This process has
repeated five times, and finally, the size of the feature maps be-
came 45 x 80 x 512. The last max-pooling layer and the three fully
connected layers of VGG-16 were not used because this step aimed
to extract feature maps from the averaged input images instead of
classification. Each layer receives the output feature maps of the
previous layer as input and generates higher-level feature maps.
As a result, low-level features such as edges, lines, and similar
color regions were detected in shallow convolutional layers. On
the other hand, abstract and synthetic high-level features were
shown in the deeper layers.

Linking VGG-16 Activations to Brain Activations

For each TR, each kernel of a convolutional layer of the VGG-16
model generates a distinct activation map. In the context of gen-

eral linear model (GLM) analysis—which scrutinizes brain regions
exhibiting patterns akin to a specific time series during the mea-
surement period—each activation map was averaged into a single
value. Consequently, with 175 input images sampling the entire
video, a 1D time series of 175 time was generated for each kernel.
This resulted in 64 time series for the first and second convolu-
tional layers, and 512 time series for eleventh, twelfth, and thir-
teenth convolutional layers (Fig. 1B). We chose to use a crude mea-
sure of averaged activations to streamline the analysis, enabling
us to investigate various kernels and layers. It is crucial to note
that fMRI is also a coarse measure of neural activity, with each
voxel representing over 600 000 neurons. While we were aware of
more sophisticated methods like representational similarity anal-
ysis (Kriegeskorte et al., 2008), we opted for the straightforward
approach for this initial exploratory analysis.

To select two convolutional layers with a large difference be-
tween feature maps, we calculated the correlation between lay-
ers. We averaged the 1D time series data that exist as many as
the number of kernels in each convolutional layer to obtain one
averaged 1D time series data for each layer. We selected the first
and thirteenth convolutional layers with the lowest correlation (r
= —0.054) for GLM and reverse analysis.

We performed voxel-wise GLM using the 1D time series of the
kernels and preprocessed fMRI data. First, the first five TRs of the
fMRI data obtained from the black screen were excluded because
they were unrelated to the video. Next, to match with fMRI data
length, the 1D time series were used only for the first 163 TRs.
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Figure 2: The characteristics of the convolutional layers. (A) The variance explained by the first 10 principal components for the 13 convolutional
layers. The variance percentage of PC1~2 became lower when the convolutional layers went deeper. (B) A correlation matrix of averaged time series
across the 13 convolutional layers. The correlation coefficient was higher between adjacent layers and lower between distant layers.

Friston’s 24-parameter model was also added as a regressor to
consider the effect of head motion (Friston et al., 1996). To check
the brain regions activated by the 1D time series of video features,
the contrast was set to 1 for only the video time series and 0 for the
remaining Friston’s 24-parameter model parts. Finally, a group-
level one-sample t-test was performed for each kernel to confirm
the brain networks commonly activated by the features across the
participants. After that, the cluster of the GLM results was per-
formed based on P < 0.001. Then, the group-level one-sample t-
test results of all kernels for each convolutional layer were added
to see which functional network of the brain was related as the
convolutional layer deepened.

Analysis of Feature Maps (Reverse Analysis)

In the voxel-wise GLM analysis, we identified brain regions that
were activated by features extracted from different layers of VGG-
16. We then conducted a reverse analysis to identify patterns in
the feature maps, providing further insights into which features
might be associated with the observed brain activations. Specially,
we were interested in the brain activations in the default mode
network and visual cortex prominent from features of the first
convolutional layer and in the supramarginal gyrus and lateral oc-
cipital complex regions prominent from features of the thirteenth
convolutional layer.

In the first convolutional layer, the brain’s functional network
obtained from the GLM with the kernel 6 related to the default
mode network, especially posterior cingulate cortex, was masked
with 0 and 1 to create a posterior cingulate mask. The generated
posterior cingulate mask was applied to the preprocessed fMRI
data of 29 participants, leaving only the intensities of the brain
regions related to the posterior cingulate cortex and converting
the intensities of the other regions to 0. The intensities of the re-
maining posterior cingulate regions were averaged with one value
for each TR time and then made into a time series with a length of
165 TRs for each participant. To determine the TR time at which
the posterior cingulate region is actively activated, the time series
ensemble of 29 participants was averaged into one averaged fMRI
time series. We identified the TR times with peaks in the averaged

fMRI time series. Considering that the delay until the BOLD (blood
oxygen level-dependent) signal was generated after stimulation
was 2 TR (4 seconds), feature maps of the kernel 6 corresponding
to the TR time after subtracting two TRs from the identified TR
time were extracted. We repeated this process for other kernels
19, 24, 42, 55, and 58 related to the posterior cingulate to extract
related feature maps. We investigated whether common patterns
exist in the extracted feature maps.

The same method was applied to kernels 7, 43, and 63 of the
first convolutional layer related to the visual cortex. In the thir-
teenth convolutional layer, kernels 9, 43, and 128 related to the
lateral occipital complex and kernels 42, 103, 168, 276, 428, and
510 associated with the supramarginal gyrus were confirmed for
the reverse analysis. After extracting the relevant feature maps,
we analyzed whether there were common patterns in the feature
maps for each brain region.

Results
Variability of Video Time Series with Layer Depth

We examined the variability between the 1D time series data ob-
tained from each kernel in the convolutional layers and the corre-
lation between the time series data across the convolutional lay-
ers. Principal component (PC) analysis was used to maximize the
variability of kernels in each convolutional layer. In the shallow
layers (first to seventh convolutional layers), there was a huge dif-
ference in the proportion of PC1 representing the features vari-
ability depending on the layer (Fig. 2A). On the other hand, in the
deep layers (eighth to twelfth convolutional layers), there was lit-
tle difference in the variability proportion of PC1 according to the
layer except for the thirteenth convolutional layer. Overall, as the
layer deepened, the proportion of PC1~2 in variability tended to
decrease. This means that a greater variety of features were ex-
tracted in deeper convolutional layers. To see the correlation be-
tween layers, a total of 13 averaged 1D time series data were used
to calculate correlation coefficients (Fig. 2B). Correlation coeffi-
cients between adjacent convolutional layers were high. On the
other hand, the correlation coefficients were lower as the distance
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thirteenth (F) convolutional layers in VGG-16. Binary activation maps for each kernel were averaged within a layer to form the probability map,
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of the convolutional layers increased. This was because CNN re-
ceives the output of the previous convolutional layer as an input
and performs a convolution operation.

Voxel-Wise Brain Activation Results

After obtaining time series for each kernel in different convolu-
tional layers, we performed voxel-wise analysis with brain activa-
tions measured with fMRI. Most of the GLMs produced statistically
significant activations in various brain regions. We examined the
distributions of activations in the brain in different convolutional
layers of VGG-16 (Fig. 3). There were widespread activations as-
sociated with different kernels in all the layers. The visual cortex
was more likely to be activated in all the convolutional layers. But
the activation patterns outside the visual cortex conveyed a shift
in different convolutional layers. Specifically, the posterior cingu-
late cortex was more likely to be activated in shallow layers such
as the first and third convolutional layers. As layers went deeper,
bilateral temporal and parietal regions were more likely to be ac-
tivated.

We contrasted the brain activation probability maps between
the shallowest layer (first convolutional layer) and the deepest
layer (thirteenth convolutional layer). Figure 4 clearly shows the
different activation distributions between the two layers. The first
convolutional layer was more likely to be associated with the pos-
terior visual cortex, as well as the posterior cingulate cortex, bi-
lateral angular gyrus, and medial prefrontal cortex, which formed
the default mode network. By contrast, the thirteenth convolu-
tional layer was more likely to be associated with supramarginal
gyrus, lateral occipital complex, and superior temporal sulcus.

Analysis of Feature Activation Patterns in VGG-16

To gain insights into the relationship between video features and
brain activations across different regions, we conducted a reverse

Figure 4: Differences in activation probability by feature activations in
different kernels between the thirteenth and the first layers. Red is more
active brain regions in the thirteenth convolutional layer, and blue is
more active brain regions in the first convolutional layer.

analysis. As a specific case, we focused on the brain regions that
exhibited a higher propensity for activation based on features de-
rived from the first and thirteenth convolutional layers. Specifi-
cally, we examined the visual cortex and posterior cingulate cor-
tex region, which demonstrated a greater likelihood of activation
in response to features from the first convolutional layer (Fig. 5).
Additionally, we investigated the supramarginal gyrus and lateral
occipital complex region, which exhibited a heightened probabil-
ity of activation in response to features from the thirteenth con-
volutional layer (Fig. 6). To investigate independent relationships
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Figure 5: Reverse analysis of (A) the visual cortex and (B) posterior cingulate cortex. Activation maps were obtained as GLM results for (A) kernel 43
related to visual cortex and (B) kernel 24 related to posterior cingulate cortex. The z-scores of the averaged fMRI time series for each brain region are
shown in blue, and the averaged feature map time series extracted from each kernel (kernel 43 or 24) are shown in red. The feature maps are for the

TR times associated with the peaks of the averaged fMRI time series.

between specific brain regions and features, kernels that simulta-
neously activate multiple brain regions were excluded.

The visual cortex emerged as the most predictable region asso-
ciated with features from the first convolutional layer. Specifically,
we observed kernels 7, 43, and 63 of the first convolutional layer
showing activation only in the visual cortex (Fig. 5A). Figure 5A
showcases the BOLD time series in the visual cortex, allowing us
to pinpoint the time points of peak regional activations. Further-
more, the feature activation maps corresponding to these peak
time points for kernel 43 are also shown. These maps validate
that the features associated with this particular kernel primarily
emphasize edges or boundaries of objects, disregarding both the
background and main characters.

The activations of the posterior cingulate cortex by features
from the first convolutional layer were unexpected. This region
is involved in the default mode network, which is typically associ-
ated with higher-order brain functions. Nonetheless, we success-
fully identified kernels 6, 19, 24, 42, 55, and 58 of the first con-
volutional layer that displayed activations only in the posterior
cingulate cortex. Subsequently, we calculated the averaged BOLD
time series within this region and identified the feature activation
maps corresponding to time points exhibiting high BOLD activa-
tions (Fig. 5B). Intriguingly, these maps indicate that the features
within these kernels primarily relate to image backgrounds rather
than the main characters.

The supramarginal gyrus displayed the highest probability of
activations among all regions for the thirteenth convolutional
layer. Previous studies have associated this region with empa-
thy for pain (Richardson et al., 2018). Within the supramarginal
gyrus, we identified kernels 42, 103, 168, 276, 428, and 510 of the
thirteenth convolutional layer that exhibited activations. Subse-
quently, we extracted the time series of BOLD activations in this
region (Fig. 6A). The feature activations in these kernels often ap-
pear blurry due to earlier convolutions and max-pooling layers.
To enhance interpretability, we overlaid the feature activations
with the input image. Observing the overlaid images, it becomes
evident that the feature activations may involve multiple char-
acters (at time point 42) or be linked to facial expressions (at
time point 145). These findings suggest that the features within
these kernels possess the capacity to represent higher-order social
information.

The lateral occipital complex region related to overall object
shape perception was also noticeably observed in the thirteenth
convolutional layer. Unlike visual cortex, which is related to low-
level visual elements, lateral occipital complex is associated with
the task of comprehensively recognizing objects (Grill-Spector,
2001). Kernels 9, 43, and 128 in the thirteenth convolutional layer
were related to lateral occipital complex. After extracting the
averaged time series of BOLD activations, feature maps from
the peaks of the time series were analyzed (Fig. 6B). Activation
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occurred across a variety of different objects (clouds, animals, and
background objects).

Discussion

In this study, we employed a widely used CNN, VGG-16, to extract
diverse visual features in a movie, and associated these feature
activations with brain activations recorded through fMRI. The ob-
served brain activations demonstrated to some extent a hierar-
chical pattern across convolutional layers. Lower convolutional
layers showed stronger associations with posterior visual cortex
and posterior cingulate cortex, whereas higher convolutional lay-
ers exhibited stronger associations with lateral occipital cortex
and supramarginal gyrus. However, within a given convolutional
layer the differentiation of different feature activations was lim-
ited, leading to many different feature activations associated with
similar brain regions.

As a sanity check, we first examined the brain activations as-
sociated with the first layer of VGG-16, where the features are
thought to reflect most basic local features of an image (Zeiler
and Fergus, 2014; Krizhevsky et al., 2017). As predicted, most of
the associated brain activations were observed in the posterior
occipital cortex, which corresponds to lower visual areas. The
correspondence suggests, to some degree, similar visual features
may be processed in shallow layers in the CNN and early visual

brain areas. The current results also indicated limitations of using
the temporal dynamic patterns to study brain activations. That
is, the brain activation patterns from the different kernels of a
layer were spatially highly similar and only showed a small num-
ber of distinct patterns. This makes sense given that the kernel
activation time series from a layer were also highly correlated,
and only a few principal components could explain most of the
variance (Fig. 2A). Even though different kernels extract distinct
features, the changes in activations across different input may
be highly similar, e.g. edges in different directions may produce
highly correlated activations over time. The temporal smoothing
with hemodynamic response function may also contribute to the
high correlations. Nevertheless, the factors that cause temporal
similarity in the CNN resemble those measured with BOLD fMRI,
which also suffer from poor specificity in measuring visual re-
sponses in brain. Alternative approaches, such as multivoxel pat-
tern analysis (Kriegeskorte et al., 2008) may be more effective to
study the brain representation of different visual features.
Surprisingly, a small number of kernels in the first convolution
layer were associated with brain activation in the posterior cin-
gulate cortex, which is part of the default mode network (Raichle
et al., 2001). The default mode network is thought to be situated
in a higher hierarchy of organization (Margulies et al.,, 2016), and
the associated functions are usually related to internalization and
higher social functions (Buckner and DiNicola, 2019). However,

20z Jequieoaq €0 U0 1senb Aq £226/8//1.209e3/PeIAsd/e60 1 0 L/10p/BlonIe/peIAS /W00 dno-olwspeoe)/:sdny Wwoij papeojumoq



8 | Psychoradiology, 2024, Vol. 4

recent studies also showed its involvements in naturalistic per-
ception (Brandman et al., 2021). The current results provide further
insights into task related activations in the default mode. Specifi-
cally, the current results demonstrated that the activations of vi-
sual features from the first layer of VGG-16 can be related to the
activations in the posterior cingulate cortex. Feature analysis fur-
ther indicated that the visual activations of these kernels were
associated with the background, rather than the main characters
of a scene. The activations in the posterior cingulate cortex may
be related to the processing of unattended features in the back-
ground, or may be negatively correlated with the level of atten-
tions (Kaefer et al., 2022). Nevertheless, the current results indi-
cate that simple visual features may be linked to brain activity in
the posterior cingulate cortex. Reverse inference of functions in
the posterior cingulate cortex requires extra caution.

As the convolutional layer progresses deeper, the brain regions
linked to kernel activations shift in a forward and upward di-
rection within the brain. Specifically, there is a greater likelihood
of association with the lateral occipital complex and the supra-
marginal network, both of which exhibit high inter-participant
correlations (Di and Biswal, 2020). The lateral occipital complex
plays a role in higher-order visual processing associated with ob-
ject recognition (Grill-Spector et al,, 2001), distinguishing itself
from lower visual areas specialized in low-level visual features
like texture (Malach et al., 1995). Hence, there seems to be a
loose correspondence between the hierarchy of CNNs and the vi-
sual processing system in the brain. The reverse analysis further
demonstrated that feature activations linked to the lateral occipi-
tal complex were typically situated around the main characters or
objects in a scene (Fig. 6B). These findings align with a recent study
demonstrating that responses from the lateral occipital complex
were significantly predictive for scene, object, and action recogni-
tion in videos during movie viewing (McMahon et al., 2023).

The supramarginal gyrus serves as a crucial brain region for
the recognition and comprehension of others’ emotions and pain
(Lamm et al., 2011; Silani et al., 2013; Di and Biswal, 2020). The cor-
relations between brain activations in the supramarginal gyrus
and feature activations in deeper layers suggested that deeper lay-
ers of VGG-16 may be able to extract social information. In the re-
verse analysis, the feature activations by the relevant thirteenth
layer kernels may at times involve two characters and at other
times be associated with a single main character (Fig. 6A). Further
investigations are needed to examine the activation characteris-
tics of these thirteenth layer kernels across various images depict-
ing social interactions, thereby validating our initial observations.
Nonetheless, these results suggest that CNNs hold promise in rep-
resenting high-order social information.

Several limitations in the current analysis should be taken into
account. First, the utilization of an animated video clip as a nat-
uralistic stimulus might introduce a potential bias. Given its arti-
ficial nature, CNNs may be more predisposed to its specific char-
acteristics. The transferability of such models to videos featuring
real human actors remains an open and challenging question.
Previous studies have demonstrated differences in brain activa-
tions when participants watch animated versus real-life movies
(Han et al., 2005; Di et al., 2022). Second, this study utilized a
CNN to extract information from 2D frames of a video, reveal-
ing that higher layers of VGG-16 may capture higher-order social
information. However, social interactions often entail dynamic
changes over time, and models considering temporal dependen-
cies, such as recurrent neural networks, may be more apt for ex-

tracting such information. Nonetheless, the inclusion of temporal
dependencies increases model complexity. Future investigations
could explore alternative model options to enhance our compre-
hension of social interactions. Finally, this study analyzed a small
dataset with only adult participants. How brain activations vary
across individuals, particularly in different age groups or as influ-
enced by biological sex, remains largely unknown. These factors
are crucial and warrant further investigation.

Conclusion

We have explored the utilization of a CNN model, specifi-
cally VGG-16, to extract diverse features at different levels. We
linked these feature activations with brain activations measured
through fMRI. Our analysis unveiled intricate relationships be-
tween brain activations and various layers of the CNN. Lower con-
volutional layers predominantly correlated with lower visual ar-
eas, while some exhibited associations with the posterior cingu-
late cortex, a component of the default mode network. By con-
trast, higher convolutional layers showed stronger associations
with lateral occipital regions and the supramarginal gyrus, the lat-
ter being linked to higher-order social processing such as empathy
for pain. Despite a high correlation in the temporal dynamics of
kernel activations within the same layer, our findings suggest that
kernels in deeper layers may signify more complex aspects of so-
cial interaction. The features extracted in this study provide a ba-
sis for future comparisons with alternative deep neural network
models. Additionally, they hold promise for quantifying the con-
tent of movies and advancing our comprehension of the neural
processes underlying cinematic experiences.
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