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Abstract 

Bac kgr ound: Natur alistic stimuli, suc h as videos, can elicit complex br ain acti v ations. Howev er, the intricate natur e of these stim uli 
makes it challenging to attribute specific brain functions to the resulting activations, particularly for higher-level processes such as 
social interactions. 

Objecti ve: We h ypothesized that activations in different layers of a convolutional neural network (VGG-16) would correspond to vary- 
ing levels of brain activation, reflecting the brain’s visual processing hier ar c hy . Additionally , we aimed to explore which brain regions 
would be linked to the deeper layers of the network. 

Methods: This study analyzed functional MRI data from participants watching a cartoon video. Using a pre-trained VGG-16 convo- 
lutional neural network, we mapped hierarchical features of the video to different levels of brain activation. Activation maps from 

various kernels and layers were extracted from video frames, and the time series of av era ge acti v ation patterns for eac h kernel w ere 
used in a voxel-wise model to examine brain responses. 

Results: Low er lay ers of the netw ork w er e primaril y associated with acti v ations in lower visual r egions, although some kernels also 
unexpectedly showed associations with the posterior cingulate cortex. Deeper layers were linked to more anterior and lateral regions 
of the visual cortex, as well as the supramarginal gyrus. 

Conclusions: This analysis demonstrated both the potential and limitations of using convolutional neur al netw orks to connect video 
content with brain functions, providing valuable insights into how different br ain re gions respond to varying levels of visual process- 
ing. 

Ke yw or ds: convolutional neur al netw ork; deep learning; default mode network; lateral occipital complex; naturalistic condition; 
supramarginal gyrus; visual cortex 
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Introduction 

Recentl y, natur alistic stim uli, suc h as movies and stories, have 
incr easingl y been emplo y ed to study brain functions in human 

neur oima ging r esearc h. This a ppr oac h offers se v er al adv anta ges 
ov er tr aditional task-based functional ma gnetic r esonance ima g- 
ing (fMRI) experiments. One of the primary benefits is that natu- 
r alistic stim uli closel y r esemble r eal-life situations, enabling the 
elicitation of complex cognitive processes. On the other hand,
compar ed with r esting-state fMRI, natur alistic stim uli allow for 
a higher le v el of experimental contr ol, r esulting in impr ov ed par- 
ticipant cooperation and increased reliability of research find- 
ings. A pi votal stud y by Hasson et al. demonstrated that different 
participants watching the same video stimulus exhibited similar 
patterns of brain activity across distributed brain regions (Has- 
son et al., 2004 ). This finding led to the widespread use of inter- 
participant correlation as a means to identify activity and con- 
nectivity patterns associated with various stimuli (Nastase, 2019 ; 
Chen et al., 2020 ; Di and Biswal, 2020 ). Despite these advance- 
ments, one major challenge is linking the observed brain data to 
the contents of natur alistic stim uli, suc h as videos and audios,
due to their inherent complexity. 
Recei v ed: 19 July 2024; Revised: 9 September 2024; Accepted: 31 October 2024 
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Numer ous anal ytical a ppr oac hes hav e emer ged to study the
omplexities of naturalistic stimuli. One conventional method is 
tilizing human subjective ratings. For instance, r esearc hers hav e
sked participants to rate their perceived motion while watching 
 cartoon video and then emplo y ed general linear model to map
r ain r esponses r elated to motion perception. This a ppr oac h iden-
ified motion-sensitiv e br ain r egions in the middle tempor al lobe
Rao et al., 2007 ). Furthermore, subjecti ve affecti ve states can be
eported and linked to br ain activ ations and dynamic connectiv-
ty (Raz et al., 2012 ; Sun et al., 2022 ). Another a ppr oac h is manuall y
agging objects of interest to investigate category-specific brain 

ctiv ations (Ric hardson et al., 2018 ). Advancements in machine
earning tec hnologies hav e also been le v er a ged. Pr e vious studies
sed traditional computer vision models to extract global motion,

ocal motion, and residual models based on motion flow and pat-
erns from videos . T hey found that the medial posterior parietal
ortex, V5 + , and V1–V4 were activated in the scenes of the global
otion model, local motion model, and residual model, respec- 

iv el y (Bartels et al., 2008 ). Celik et al. have built encoding models
f various objects (car, bridge, etc.) from video stimuli to study
ategory r epr esentations in the cer ebr al cortex (Çelik et al., 2021 ).
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ecentl y, convolutional neur al networks (CNNs) hav e been used
o extract visual features of videos, particularly in the context of
ace processing (Jiahui et al., 2022 ; Hu et al., 2023 ). 

The natur alistic stim uli hav e been selected to explore intri-
ate social functions such as the theory of mind and empathy
Richar dson et al., 2018 ). Ho w ever, the field still lacks machine
earning models that can effectiv el y describe v arious aspects of
ocial functions due to the complexity of the naturalistic stim-
li. A recent study by McMahon and colleagues emplo y ed mul-
iple machine learning models to extract different levels of fea-
ur es fr om videos containing social inter actions (McMahon et al.,
023 ). They established a hier arc hy of social interactions, primar-
ly linked to the temporal lobe regions . Nevertheless , the higher-
e v el featur es in their hier arc hy still r el y on manuall y selected
eatur es. In our curr ent study, we aim to test the hypothesis of
hether we can extract features related to social functions using
NNs. We systematically investigate how different convolutional

ayers are associated with the hierarchy of various brain regions.
his a ppr oac h may offer valuable insights into understanding the
eural basis of social interactions and potentially uncover novel
ndings that were previously limited by manual feature selection
ethods. 
CNNs have demonstrated remarkable success in computer vi-

ion (Simonyan and Zisserman, 2015 ; Krizhevsky et al., 2017 ). One
f fundamental elements in CNNs is the convolutional kernels,
hic h extr act local featur es fr om data. As the data pr ogr esses

hrough deeper layers of convolutional kernels, more complex
eatur es ar e extr acted. While CNNs ar e typicall y tr ained on lar ge-
cale image datasets for image recognition, encompassing 1000
ategories (Deng et al., 2009 ), we posit that a CNN trained on the
mageNet dataset might have learned information relevant to so-
ial interactions. To explore this hypothesis, we investigate how
eatur es extr acted fr om v arious kernels of con volutional la yers
orrelate with brain activations in different brain regions. In a re-
ent study, Hu and colleagues utilized a pr e-tr ained VGG-16 CNN
o extract features from different layers while analyzing affective
ideos (Hu et al., 2023 ). T hey disco v er ed that br ain micr ostates
alculated fr om electr oencephalogr am data wer e onl y corr elated
ith featur es fr om deeper con volutional la yers (la yers 11, 12, and
3). Building on this work, our current study employs fMRI data,
hic h pr ovides superior spatial resolution. This enables us to ex-
mine how different brain regions are associated with the features
xtr acted fr om div erse kernels of con volutional la yers . By le v er a g-
ng the strengths of fMRI, we aim to gain deeper insights into the
elationship between neural activations and the hierarchical vi-
ual r epr esentations gener ated by CNNs. 

In this study, we employed a single pr e-tr ained VGG-16 net-
ork, one of image feature extractors, to analyze a short, ani-
ated movie and extract features at different levels from the con-
 olutional lay ers. Our primary aim was to investigate how and
her e these div erse le v els of featur es ar e r epr esented in the hu-
an brain. To accomplish this, we analyzed fMRI data from young

dult volunteers while they watched the same movie clip. We uti-
ized a generalized linear model approach to map brain regions
hose temporal activity pattern matched the feature activity pat-

ern from specific kernels of a convolutional layer. Our hypothesis
 e volv es ar ound the notion that br ain activ ation patterns will ex-
ibit a hier arc hy fr om low-le v el visual ar eas to high-le v el ar eas
elated to social interaction and empathy through CNN’s hierar-
 hical featur e ma ps. Of particular inter est to us wer e the br ain
egions associated with higher convolutional layers. Considering
hat VGG-16 was trained for image classification, we postulated
hat higher convolutional layers might primaril y r epr esent cate-
orical featur es, possibl y linking to the v entr al visual pathway in
he brain. In addition, due to the rich image context in the mo vie ,
t could also encompass action, motion, and social information,
hich may be more prevalent in deeper convolutional layers of
GG-16. We were especially intrigued by whether the dorsal vi-
ual pathway, and e v en the thir d “social” pathw ay, could also be
ssociated with featur es fr om deeper la yers . If this pro ves to be
rue, VGG-16 could serve as a valuable tool for studying social
unctions using video stimuli, extending beyond its conventional
mage classification capabilities. 

aterials and Methods 

MRI Data 

he fMRI data were obtained from openneuro ( https://openneuro.
r g/; accession no. ds000228). Onl y adults’ data ( n = 33) were used
or this study. The effective sample consisted of 17 females and 12

ales (a ge r ange 18–39 years, mean = 24.6, SD = 5.3), excluding
articipants with excessive head motion or poor cov er a ge accord-

ng to the criteria mentioned in the pr e vious study (Di and Biswal,
020 ). 

During the fMRI acquisition, all participants watched the
P artl y Cloudy” animation by Pixar ( https://www.pixar.com/
artly- cloudy#par- tly- cloudy- 1 ) for ∼6 minutes with a black
creen of first 10 seconds (1–5 TRs) (Richardson et al., 2018 ). Struc-
ural and functional MRI data were acquired by a 3 Tesla Siemens
im Trio scanner at the Massachusetts Institute of Technology.
he T1-weighted structural MRI data were gathered in 176 inter-

eav ed sa gittal slices with 1mm isotr opic. All fMRI data wer e ac-
uired by a gradient-echo EPI (repetition time (TR) = 2 s, echo time

TE) = 30 ms, flip angle = 90 ◦). A total of 168 fMRI images were
easur ed fr om eac h participant. 
The fMRI data were analyzed using SPM12 and MATLAB

R2021b) as described in our pr e vious study (Di and Biswal, 2020 ).
riefly, first, the anatomical T1 images of all participants were
egmented into six segments. Afterw ar d, all skulls w er e r emov ed
rom the T1 images. All functional images were realigned con-
erning the first image. In this process, the degree of translation
nd rotation was calculated, and participants with a maximum
r ame wise displacement > 1.5 mm or 1.5 ◦ wer e r emov ed (Di and
is wal, 2015 ). T he remaining functional images were coregistered
ith the skull-stripped anatomical image of the same participant.
ext, the anatomical and functional images were normalized to
NI space, and the voxel size was resampled to 3 × 3 × 3 mm 

3 . Fi-
ally, the functional images were spatially smoothed through an
-mm Gaussian kernel. 

ideo Analysis 

ecause brain activations occurring within each TR are repre-
ented in a single fMRI image, the video content needs to be
rouped into TR units to enable comparison between the con-
inuous video content and the fMRI data. Given the TR of 2 sec-
nds, eac h fMRI ima ge corr esponds to 2 seconds of video contents.
her efor e, we av er a ged the video frames for e v ery 2 seconds be-
or e extr acting featur es fr om the video. Since the frame rate was
4 fr ames/s, 48 fr ames wer e av er a ged into one ima ge. As a r esult,
he 8370 total frames of the video clip were converted to 175 im-
ges. 

To examine the correlation between fMRI images generated at
ach TR and video features, we utilized CNNs, which are spe-
ialized for image analysis, to process the image-based videos.
pecifically, similar to studies exploring the relationship between

https://openneuro.org/;
https://www.pixar.com/partly-cloudy#par-tly-cloudy-1
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Figure 1: Illustration of video feature extraction and general linear model (GLM) analysis. ( A ) 8370 images of the original video were converted into 175 
images based on TR 2 s and the 175 images were used in VGG-16 for feature extraction. ( B ) 2D feature maps from each kernel were transformed into 
time series, and then the time series was used for GLM on the fMRI data. Kernel activation maps were calculated by averaging the activation maps of 
e v ery kernel of a convolutional layer in VGG-16. 
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emotion dynamics and stimuli, we employed the pr e-tr ained VGG- 
16 model to analyze the image data. VGG-16 consists of 13 convo- 
lutional la yers , 5 max-pooling la yers , and 3 fully connected layers 
(Fig. 1 A). Eac h av er a ged ima ge with 720 × 1280 × 3 dimensions 
was fed to the VGG-16 model. The input ima ges wer e convolv ed 

with 64 3 × 3 × 3 kernels in the first convolutional layer and then 

generated 720 × 1280 × 64 feature maps . F eature maps show the 
location and intensity of various patterns contained in the input.
These were used as an input of the second con volutional la yer and 

convolved with 64 3 × 3 × 64 kernels, generating 720 × 1280 × 64 
featur e ma ps. Afterw ar d, the size of the featur e ma ps was r educed 

to 360 × 640 × 64 through the max-pooling la yer. T his process has 
r epeated fiv e times, and finally, the size of the featur e ma ps be- 
came 45 × 80 × 512. The last max-pooling layer and the three fully 
connected layers of VGG-16 were not used because this step aimed 

to extract feature maps from the averaged input images instead of 
classification. Each layer receives the output feature maps of the 
pr e vious layer as input and generates higher-level feature maps.
As a r esult, low-le v el featur es suc h as edges , lines , and similar 
color regions were detected in shallow convolutional la yers . On 

the other hand, abstract and synthetic high-le v el featur es wer e 
shown in the deeper la yers . 

Linking VGG-16 Activations to Brain Activations 

For eac h TR, eac h kernel of a con volutional la yer of the VGG-16 
model generates a distinct activation map. In the context of gen- 
ral linear model (GLM) analysis—which scrutinizes brain regions 
xhibiting patterns akin to a specific time series during the mea-
ur ement period—eac h activ ation ma p was av er a ged into a single
 alue. Consequentl y, with 175 input images sampling the entire
ideo, a 1D time series of 175 time was generated for each kernel.
his resulted in 64 time series for the first and second convolu-
ional la yers , and 512 time series for ele v enth, twelfth, and thir-
eenth convolutional layers (Fig. 1 B). We chose to use a crude mea-
ur e of av er a ged activ ations to str eamline the anal ysis, enabling
s to investigate various kernels and la yers . It is crucial to note
hat fMRI is also a coarse measure of neural activity, with each
o xel re presenting over 600 000 neurons. While w e w ere aw are of
ore sophisticated methods like representational similarity anal- 

sis (Kriegeskorte et al., 2008 ), we opted for the straightforw ar d
 ppr oac h for this initial exploratory analysis. 

To select two con volutional la yers with a lar ge differ ence be-
ween featur e ma ps, we calculated the correlation between lay-
rs . We a v er a ged the 1D time series data that exist as man y as
he number of kernels in each convolutional layer to obtain one
v er a ged 1D time series data for each layer. We selected the first
nd thirteenth convolutional layers with the lowest correlation ( r
 −0.054) for GLM and r e v erse anal ysis. 
We performed voxel-wise GLM using the 1D time series of the

 ernels and pre processed fMRI data. First, the first five TRs of the
MRI data obtained from the black screen were excluded because
hey wer e unr elated to the video. Next, to matc h with fMRI data
ength, the 1D time series were used only for the first 163 TRs.
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Figur e 2: T he c har acteristics of the con volutional la yers . ( A ) T he variance explained by the first 10 principal components for the 13 con volutional 
la yers . T he variance percentage of PC1 ∼2 became lower when the convolutional layers went deeper. ( B ) A correlation matrix of averaged time series 
across the 13 convolutional layers. The correlation coefficient was higher between adjacent layers and lower between distant la yers . 
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riston’s 24-parameter model was also added as a r egr essor to
onsider the effect of head motion (Friston et al., 1996 ). To c hec k
he br ain r egions activ ated by the 1D time series of video features,
he contrast was set to 1 for only the video time series and 0 for the
 emaining Friston’s 24-par ameter model parts. Finall y, a gr oup-
e v el one-sample t -test was performed for each kernel to confirm
he brain networks commonly activated by the features across the
articipants. After that, the cluster of the GLM results was per-
ormed based on P < 0.001. Then, the gr oup-le v el one-sample t -
est results of all kernels for each convolutional lay er w ere added
o see which functional network of the brain was related as the
on volutional la yer deepened. 

nalysis of Feature Maps (Reverse Analysis) 
n the v oxel-wise GLM analysis, w e identified brain regions that
er e activ ated by featur es extr acted fr om differ ent layers of VGG-
6. We then conducted a r e v erse anal ysis to identify patterns in
he feature maps , pro viding further insights into which features

ight be associated with the observed brain activations. Specially,
 e w er e inter ested in the br ain activ ations in the default mode
etwork and visual cortex pr ominent fr om featur es of the first
on volutional la yer and in the supr amar ginal gyrus and lateral oc-
ipital complex regions prominent from features of the thirteenth
on volutional la yer. 

In the first convolutional layer, the brain’s functional network
btained from the GLM with the kernel 6 related to the default
ode network, especially posterior cingulate cortex, was masked
ith 0 and 1 to create a posterior cingulate mask. The generated
osterior cingulate mask was applied to the pr epr ocessed fMRI
ata of 29 participants , lea ving only the intensities of the brain
 egions r elated to the posterior cingulate cortex and converting
he intensities of the other regions to 0. The intensities of the re-

aining posterior cingulate regions were averaged with one value
or each TR time and then made into a time series with a length of
65 TRs for each participant. To determine the TR time at which
he posterior cingulate region is acti vely acti vated, the time series
nsemble of 29 participants was av er a ged into one av er a ged fMRI
ime series. We identified the TR times with peaks in the av er a ged
MRI time series. Considering that the delay until the BOLD (blood
xygen le v el-dependent) signal was generated after stimulation
as 2 TR (4 seconds), feature maps of the kernel 6 corresponding

o the TR time after subtracting two TRs from the identified TR
ime were extracted. We repeated this process for other kernels
9, 24, 42, 55, and 58 related to the posterior cingulate to extract
 elated featur e ma ps . We in vestigated whether common patterns
xist in the extracted feature maps. 

The same method was applied to kernels 7, 43, and 63 of the
rst con volutional la yer related to the visual cortex. In the thir-
eenth convolutional layer, kernels 9, 43, and 128 related to the
ateral occipital complex and kernels 42, 103, 168, 276, 428, and
10 associated with the supr amar ginal gyrus were confirmed for
he r e v erse anal ysis. After extr acting the r ele v ant featur e ma ps,
e analyzed whether there were common patterns in the feature
aps for each brain region. 

esults 

ariability of Video Time Series with La y er Depth
e examined the variability between the 1D time series data ob-

ained from each kernel in the convolutional layers and the corre-
ation between the time series data across the convolutional lay-
rs. Principal component (PC) analysis was used to maximize the
ariability of kernels in each convolutional layer. In the shallow
ayers (first to se v enth convolutional layers), there was a huge dif-
erence in the proportion of PC1 r epr esenting the featur es v ari-
bility depending on the layer (Fig. 2 A). On the other hand, in the
eep layers (eighth to twelfth convolutional layers), there was lit-
le difference in the variability proportion of PC1 according to the
ayer except for the thirteenth con volutional la yer. Ov er all, as the
ayer deepened, the proportion of PC1 ∼2 in variability tended to
ecrease . T his means that a greater variety of features were ex-
racted in deeper con volutional la yers . To see the correlation be-
w een lay ers, a total of 13 av er a ged 1D time series data were used
o calculate correlation coefficients (Fig. 2 B). Correlation coeffi-
ients between adjacent convolutional layers were high. On the
ther hand, the correlation coefficients w ere lo w er as the distance
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Figure 3: Activation probability by feature activations of the video in different kernels in the first ( A ), third ( B ), fifth ( C ), eighth ( D ), ele v enth ( E ), and 
thirteenth ( F ) convolutional layers in VGG-16. Binary activation maps for each kernel were averaged within a layer to form the probability map, 
resulting in a range of 0 to 1. 

 

Figure 4: Differences in activation probability by feature activations in 
different kernels between the thirteenth and the first la yers . Red is more 
activ e br ain r egions in the thirteenth con volutional la yer, and blue is 
mor e activ e br ain r egions in the first con volutional la yer. 
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of the convolutional layers increased. This was because CNN re- 
ceives the output of the previous convolutional layer as an input 
and performs a convolution operation. 

Vo x el-Wise Brain Activation Results 

After obtaining time series for each kernel in different convolu- 
tional la yers , we performed voxel-wise analysis with brain activa- 
tions measured with fMRI. Most of the GLMs produced statistically 
significant activations in various brain regions. We examined the 
distributions of activations in the brain in different convolutional 
layers of VGG-16 (Fig. 3 ). Ther e wer e widespr ead activ ations as- 
sociated with different kernels in all the la yers . T he visual cortex 
was more likely to be activated in all the convolutional layers. But 
the activation patterns outside the visual cortex conveyed a shift 
in different convolutional layers. Specifically, the posterior cingu- 
late cortex was more likely to be activated in shallow layers such 

as the first and thir d conv olutional lay ers. As lay ers w ent deeper,
bilater al tempor al and parietal r egions wer e mor e likel y to be ac- 
tivated. 

We contrasted the brain activation probability maps between 

the shallo w est lay er (first conv olutional lay er) and the deepest 
layer (thirteenth convolutional layer). Figure 4 clearly shows the 
differ ent activ ation distributions betw een the tw o lay ers. The first 
con volutional la yer was more likely to be associated with the pos- 
terior visual cortex, as well as the posterior cingulate cortex, bi- 
lateral angular gyrus, and medial prefrontal cortex, which formed 

the default mode network. By contrast, the thirteenth convolu- 
tional layer was more likely to be associated with supramarginal 
gyrus, lateral occipital complex, and superior temporal sulcus. 

Anal ysis of Fea ture Activ a tion Pa tterns in V GG-16 

To gain insights into the relationship between video features and 

br ain activ ations acr oss differ ent r egions, we conducted a r e v erse 
nalysis. As a specific case, we focused on the brain regions that
xhibited a higher propensity for activation based on features de-
iv ed fr om the first and thirteenth con volutional la yers . Specifi-
ally, we examined the visual cortex and posterior cingulate cor-
ex r egion, whic h demonstr ated a gr eater lik elihood of acti vation
n response to features from the first convolutional layer (Fig. 5 ).
dditionall y, we inv estigated the supr amar ginal gyrus and lateral
ccipital complex r egion, whic h exhibited a heightened pr obabil-
ty of activation in response to features from the thirteenth con-
 olutional lay er (Fig. 6 ). To inv estigate independent r elationships
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Figure 5: Re v erse anal ysis of ( A ) the visual cortex and ( B ) posterior cingulate cortex. Activ ation ma ps wer e obtained as GLM r esults for (A) kernel 43 
related to visual cortex and (B) kernel 24 related to posterior cingulate cortex. The z -scores of the averaged fMRI time series for each brain region are 
shown in blue, and the av er a ged featur e ma p time series extr acted fr om eac h k ernel (k ernel 43 or 24) ar e shown in r ed. The featur e ma ps ar e for the 
TR times associated with the peaks of the av er a ged fMRI time series. 
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etween specific brain regions and features, kernels that simulta-
eousl y activ ate m ultiple br ain r egions wer e excluded. 

The visual cortex emerged as the most predictable region asso-
iated with features from the first convolutional layer. Specifically,
e observed kernels 7, 43, and 63 of the first convolutional layer

howing activation only in the visual cortex (Fig. 5 A). Figure 5 A
howcases the BOLD time series in the visual cortex, allowing us
o pinpoint the time points of peak regional activations. Further-

or e, the featur e activ ation ma ps corr esponding to these peak
ime points for kernel 43 are also shown. These maps validate
hat the features associated with this particular kernel primarily
mphasize edges or boundaries of objects, disregarding both the
ac kgr ound and main c har acters. 

The activations of the posterior cingulate cortex by features
rom the first convolutional layer were unexpected. This region
s involved in the default mode network, which is typically associ-
ted with higher-order brain functions . Nonetheless , we success-
ully identified kernels 6, 19, 24, 42, 55, and 58 of the first con-
 olutional lay er that display ed activ ations onl y in the posterior
ingulate cortex. Subsequently, we calculated the averaged BOLD
ime series within this region and identified the feature activation

a ps corr esponding to time points exhibiting high BOLD activ a-
ions (Fig. 5 B). Intriguingly, these maps indicate that the features
ithin these kernels primaril y r elate to image backgrounds rather

han the main c har acters. 
The supr amar ginal gyrus displayed the highest pr obability of
ctivations among all regions for the thirteenth convolutional
ayer. Pr e vious studies hav e associated this region with empa-
hy for pain (Richardson et al. , 2018 ). W ithin the supr amar ginal
yrus, we identified kernels 42, 103, 168, 276, 428, and 510 of the
hirteenth con volutional la yer that exhibited activations. Subse-
uentl y, we extr acted the time series of BOLD activ ations in this
egion (Fig. 6 A). The feature activations in these kernels often ap-
ear blurry due to earlier convolutions and max-pooling la yers .
o enhance inter pr etability, we ov erlaid the featur e activ ations
ith the input image. Observing the ov erlaid ima ges, it becomes

vident that the feature activations may involve multiple char-
cters (at time point 42) or be linked to facial expressions (at
ime point 145). These findings suggest that the features within
hese kernels possess the capacity to represent higher-order social
nformation. 

The lateral occipital complex region related to overall object
hape per ception w as also noticeabl y observ ed in the thirteenth
on volutional la yer. Unlike visual cortex, which is related to low-
e v el visual elements, later al occipital complex is associated with
he task of compr ehensiv el y r ecognizing objects (Grill-Spector,
001 ). Kernels 9, 43, and 128 in the thirteenth convolutional layer
er e r elated to later al occipital complex. After extr acting the
v er a ged time series of BOLD activ ations, featur e ma ps fr om
he peaks of the time series were analyzed (Fig. 6 B). Activation
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Figure 6: Re v erse anal ysis of ( A ) supr amar ginal gyrus and ( B ) later al occipital complex r egions. Activ ation ma ps wer e obtained as GLM r esults for (A) 
kernel 276 for supr amar ginal gyrus and (B) kernel 9 for lateral occipital complex. The z -scores of the averaged fMRI time series for each brain region 
are shown in blue, and the av er a ged featur e ma p time series extr acted fr om eac h k ernel (k ernel 43 or 24) ar e shown in r ed. The featur e ma ps ar e for 
the TR times related to the peaks of the averaged fMRI time series. 

b  

t  

i  

l  

b  

a  

a  

v  

f  

b  

h  

w
h  

s  

w  

s  

t  

s
 

l  

g  

e  

i  

t
h  

D
ow

nloaded from
 https://academ

ic.oup.com
/psyrad/article/doi/10.1093/psyrad/kkae021/7875223 by guest on 03 D

ecem
ber 2024
occurr ed acr oss a v ariety of differ ent objects (clouds , animals , and 

bac kgr ound objects). 

Discussion 

In this study, we employed a widely used CNN, VGG-16, to extract 
diverse visual features in a mo vie , and associated these feature 
activ ations with br ain activ ations r ecorded thr ough fMRI. The ob- 
serv ed br ain activ ations demonstr ated to some extent a hierar- 
chical pattern across convolutional lay ers. Lo w er conv olutional 
lay ers sho w ed stronger associations with posterior visual cortex 
and posterior cingulate cortex, whereas higher convolutional lay- 
ers exhibited stronger associations with lateral occipital cortex 
and supr amar ginal gyrus. Ho w e v er, within a giv en convolutional 
layer the differentiation of different feature activations was lim- 
ited, leading to many different feature activations associated with 

similar brain regions. 
As a sanity c hec k, we first examined the br ain activ ations as- 

sociated with the first layer of VGG-16, where the features are 
thought to reflect most basic local features of an image (Zeiler 
and F ergus , 2014 ; Krizhevsky et al., 2017 ). As predicted, most of 
the associated brain activations were observed in the posterior 
occipital cortex, which corresponds to lo w er visual areas . T he 
correspondence suggests, to some degree, similar visual features 
may be processed in shallow layers in the CNN and early visual 
r ain ar eas . T he curr ent r esults also indicated limitations of using
he temporal dynamic patterns to study br ain activ ations . T hat
s, the brain activation patterns from the different kernels of a
ay er w er e spatiall y highl y similar and onl y sho w ed a small num-
er of distinct patterns . T his makes sense given that the kernel
ctivation time series from a layer were also highly correlated,
nd only a few principal components could explain most of the
 ariance (Fig. 2 A). Ev en though differ ent kernels extr act distinct
eatur es, the c hanges in activ ations acr oss differ ent input may
e highly similar, e.g. edges in different directions may produce
ighl y corr elated activ ations ov er time. The temporal smoothing
ith hemodynamic response function may also contribute to the 
igh corr elations. Ne v ertheless, the factors that cause temporal
imilarity in the CNN resemble those measured with BOLD fMRI,
hich also suffer from poor specificity in measuring visual re-

ponses in br ain. Alternativ e a ppr oac hes, suc h as m ulti vo xel pat-
ern analysis (Kriegeskorte et al., 2008 ) may be more effective to
tudy the brain representation of different visual features. 

Sur prisingl y, a small number of kernels in the first convolution
ay er w ere associated with br ain activ ation in the posterior cin-
ulate cortex, which is part of the default mode network (Raichle
t al., 2001 ). The default mode network is thought to be situated
n a higher hier arc hy of or ganization (Mar gulies et al., 2016 ), and
he associated functions are usually related to internalization and 

igher social functions (Buckner and DiNicola, 2019 ). Ho w e v er,
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ecent studies also sho w ed its inv olv ements in natur alistic per-
eption (Brandman et al., 2021 ). The current results provide further
nsights into task related activations in the default mode. Specifi-
all y, the curr ent r esults demonstr ated that the activ ations of vi-
ual featur es fr om the first layer of VGG-16 can be related to the
ctivations in the posterior cingulate cortex. Feature analysis fur-
her indicated that the visual activations of these kernels were
ssociated with the bac kgr ound, r ather than the main c har acters
f a scene . T he activations in the posterior cingulate cortex may
e related to the processing of unattended features in the back-
round, or may be negatively correlated with the level of atten-
ions (Kaefer et al., 2022 ). Ne v ertheless, the curr ent r esults indi-
ate that simple visual features may be linked to brain activity in
he posterior cingulate cortex. Re v erse infer ence of functions in
he posterior cingulate cortex r equir es extr a caution. 

As the con volutional la yer pr ogr esses deeper, the br ain r egions
inked to kernel activations shift in a forw ar d and upw ar d di-
ection within the brain. Specifically, there is a greater likelihood
f association with the lateral occipital complex and the supra-
arginal network, both of which exhibit high inter-participant

orrelations (Di and Bis wal, 2020 ). T he lateral occipital complex
lays a role in higher-order visual processing associated with ob-

ect recognition (Grill-Spector et al., 2001 ), distinguishing itself
rom lo w er visual areas specialized in lo w-le v el visual featur es
ike textur e (Malac h et al., 1995 ). Hence, there seems to be a
oose correspondence between the hierarchy of CNNs and the vi-
ual processing system in the brain. The reverse analysis further
emonstr ated that featur e activ ations linked to the later al occipi-
al complex were typically situated around the main characters or
bjects in a scene (Fig. 6 B). These findings align with a recent study
emonstrating that responses from the lateral occipital complex
er e significantl y pr edictiv e for scene, object, and action recogni-

ion in videos during movie viewing (McMahon et al., 2023 ). 
The supr amar ginal gyrus serv es as a crucial br ain r egion for

he recognition and comprehension of others’ emotions and pain
Lamm et al., 2011 ; Silani et al., 2013 ; Di and Bis wal, 2020 ). T he cor-
 elations between br ain activ ations in the supr amar ginal gyrus
nd feature activations in deeper layers suggested that deeper lay-
rs of VGG-16 may be able to extract social information. In the re-
 erse anal ysis, the featur e activ ations by the r ele v ant thirteenth
a yer kernels ma y at times in v olve tw o c har acters and at other
imes be associated with a single main c har acter (Fig. 6 A). Further
nv estigations ar e needed to examine the activ ation c har acteris-
ics of these thirteenth layer kernels across various images depict-
ng social inter actions, ther eby v alidating our initial observ ations.
onetheless, these results suggest that CNNs hold promise in rep-

esenting high-order social information. 
Se v er al limitations in the current analysis should be taken into

ccount. First, the utilization of an animated video clip as a nat-
r alistic stim ulus might intr oduce a potential bias. Giv en its arti-
cial nature, CNNs may be more predisposed to its specific char-
cteristics . T he tr ansfer ability of such models to videos featuring
eal human actors remains an open and challenging question.
r e vious studies hav e demonstr ated differ ences in br ain activ a-
ions when participants watch animated versus real-life movies
Han et al., 2005 ; Di et al., 2022 ). Second, this study utilized a
NN to extract information from 2D frames of a video, reveal-

ng that higher layers of VGG-16 may ca ptur e higher-order social
nformation. Ho w e v er, social inter actions often entail dynamic
 hanges ov er time, and models considering tempor al dependen-
ies, such as recurrent neural networks , ma y be more apt for ex-
r acting suc h information. Nonetheless, the inclusion of tempor al
ependencies increases model complexity. Future investigations
ould explore alternative model options to enhance our compre-
ension of social inter actions. Finall y, this study anal yzed a small
ataset with only adult participants. How brain activations vary
cr oss individuals, particularl y in differ ent a ge gr oups or as influ-
nced by biological sex, remains largely unknown. These factors
re crucial and warrant further investigation. 

onclusion 

e hav e explor ed the utilization of a CNN model, specifi-
ally VGG-16, to extract diverse features at different levels. We
inked these feature activations with brain activations measured
hrough fMRI. Our analysis unveiled intricate relationships be-
ween br ain activ ations and v arious lay ers of the CNN. Lo w er con-
 olutional lay ers pr edominantl y corr elated with lo w er visual ar-
as, while some exhibited associations with the posterior cingu-
ate cortex, a component of the default mode network. By con-
rast, higher convolutional layers showed stronger associations
ith lateral occipital regions and the supramarginal gyrus, the lat-

er being linked to higher-order social processing such as empathy
or pain. Despite a high correlation in the temporal dynamics of
 ernel acti vations within the same layer, our findings suggest that
ernels in deeper layers may signify more complex aspects of so-
ial interaction. The features extracted in this study provide a ba-
is for future comparisons with alternative deep neural network
odels. Ad ditionally, the y hold promise for quantifying the con-

ent of movies and advancing our comprehension of the neural
r ocesses underl ying cinematic experiences. 
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